Nix - Fundamentals

If you stare into the abyss. ..

Jakub Grzegorz Sokotowski
29/05/2020

1/25



Contents Overview

= What is Nix?

= Basic Syntax

= Evaluating Functions

= Importing Files

= What is a Derivation?

= How is a Derivation made?
= Building a Derivation

= Generic Builder Magic

= Nix Shell for Building

= Making a Custom Nix Shell
= What are Nix Packages

= Final Thoughts

= Resources

= Questions?

2/25



hat

The Purely Functional Package Manager

A way to define software build process and its dependencies in a precise manner.

Syntax uses a subset of Haskell functional programming language.

3/25



Basic Syntax - Types

There are eight basic types in Nix:

Name Example Description

Null It is what it is. . .

Boolean and Yep. ..

Integer or Integer ops always return integers
Float or Float ops always return floats
String Provides interpolation syntax
Lists Lists can mix types

Sets Name/value pairs ending with
Path or Square braces resolve from

No dark magic here.

4/25



Basic Syntax - Functions

The : character is used to indicate function arguments.
nix-repl> double = x: x * 2

nix-repl> doube 10

20

Here's a simple number adding function:
nix-repl> add = x: y: x +y
nix-repl> add 2 2

4

Here's the same function taking one Set as an argument with defaults:
nix-repl> add = { x 7 2, y 72 }: x +y

nix-repl> add { x = 1; }

3

Passing arguments via a Set is the most common way.

5/25



Basic Syntax - Expressions

Every Nix file is a Nix expression that can be a function or a value.

But the vast majority of Nix files take the form of a function that accepts an attribute

set - essentially an object - as an argument:

{ ? }
=
input;
= [ input];
};
in
The block allows for defining things you want to use but not return.

6/25



Evaluating Functions

The tool can be used to evaluate Nix code:

> --eval -E
You can do the same for our to see its output:

> --eval --strict --arg x 1 function.nix
{

= [ Ig

}
You can also use the flag to get a more generic output.

7/25



Evaluating Functions - Arguments

You can also change the argument value using

> --eval --strict --argstr input modified function.nix
{
= g
= [L 15
}
Or for more complex arguments like lists of attribute sets.

8/25



Importing Files

The way to import another file in Nix is using the keyword:
{ , version }:

{

}

= 5
= import ./src.nix { inherit pname version; };
= import ./meta.nix { inherit pname version; };
in {

pname version meta src;

9/25



Importing Files - Implicit Arguments

In order to avoid specifying every single argument we can use
{ ? import <mixpkgs> { } }:

(pkgs) g

B

= newScope { inherit pname version; }

= callPackage ./src.nix { };
= callPackage ./meta.nix { };
in {

pname version meta src;

The function is heavily used in all of , specifically:

10/25


https://github.com/NixOS/nixpkgs/blob/master/pkgs/top-level/all-packages.nix

What is a Derivation?

Derivation is a Nix expression describes everything that goes into a package build action:

= Build tools

= Libraries

= Sources

= Build scripts

= Environment variables

Nix tries very hard to ensure that Nix expressions are deterministic: building a Nix
expression twice should yield the same result.

Derivations are made with primitive or extended function.

11/25


https://nixos.org/nix/manual/#ssec-derivation
https://github.com/status-im/nixpkgs/blob/status-mods/pkgs/stdenv/generic/make-derivation.nix

What is a Derivation? - Example

Here's an example using the GNU Hello package:

rec {

= with stdenv.lib; {

= licenses.gpl3Plus;

12/25



How is a Derivation made?

The function is an extended version of the built-in and it's
defined in the repository in

It takes arguments like:

] - Name of the package, user in Nix store path.

. - Self explanatory, also used in the path.

] - Source for the package, usually acquired with or

. - Same as except it's a list.

] - List of packages necessary for build. Tools end up in

] - Flags for running for package.

. - List of files to apply to the package sources.

] - Way to customize which phases of build run and which don’t.
. - Meta data including maintainers, licenses, and description.

= And many others. ..

And creates a file which contains all the necessary inputs to build the package.

13/25


https://github.com/NixOS/nixpkgs
https://github.com/NixOS/nixpkgs/blob/fe3e52c29154d8b8549f58dbd296ba373b7b803d/pkgs/stdenv/generic/make-derivation.nix#L11-L21

Building a Derivation

The simplest way to build a derivation is to use

> --no-out-link --attr pkgs.hello
You can see it contains the binary:
> /nix/store/fbd9srb51lx1rbr9w3cl4d5p5hgwbhk9jj-hello-2.10
> =1, /bin
41

1 root root 37808 Jan 1 1970 hello

>
, world!

> -1 /nix/store/fbd9sr5lx1r5r9w3cl4d5pbhgwbhk9jj-hello-2.10/share
10

2 root root 3 Jan 1 1970 info
44 root root 44 Jan 1 1970 locale
3 root root 3 Jan 1 1970 man

As well as other things like the manual pages for the package.

14/25



Building a Derivation - Inputs

Each derivation has a file which is a specific instance of it's configuration:
> --query --deriver
>
> -nl
(L(C >

It can be parsed using

> --query --binding name
> --query --binding stdenv
> --query --binding src

There's also a new command:

15/25



Generic Builder Magic - stdenv

When a derivation is being built an shell environment is created - normally
environment - which provides all the standard build tools like

, , or

Inside of that shell the script is sourced which provides a set of Bash

functions. Amongst them the most important one is

You can see the using:

> show-derivation nixpkgs.stdenv

{

{
oAl
2
}
o

16/25


https://github.com/status-im/nixpkgs/blob/fe3e52c29154d8b8549f58dbd296ba373b7b803d/pkgs/stdenv/generic/setup.sh
https://github.com/status-im/nixpkgs/blob/b3c2a06583ea3cb5b3e5fc14cda4959bb4bcdb2e/pkgs/stdenv/generic/setup.sh#L1250-L1292
https://nixos.org/nixos/nix-pills/fundamentals-of-stdenv.html

Generic Builder Magic - genericBuilder

The function calls in order the following phases:
] - Unpacks the source provided via or .
. - Applies patches from the argument. (Optional)
. - Runs with with
] - Runs with provided .
. - If is enabled runs . (Optional)
. - Calls to put build output into
] - Stripping binaries, running , fixing paths.
- - Runs if available. (Optional)
. - Runs and copies tarballs. (Optional)
This order chan be changed by setting the variable, as well as addition of new

phases or removal of existing ones.

Read more about this at:

17/25


https://nixos.org/nixpkgs/manual/#sec-stdenv-phases

Nix Shell for Building

A way to create the same shell used for building a derivation is using

It's crucial to understand that arguments are available as env variables.
> -A hello
[ :~]$ echo
2.10
[ :~]$ echo
[ :~]$ echo
[ :~1$ type genericBuild | -n2

is a function

L :~]$ grep genericBuild /setup
{
The variables contains the script initialized for this specific build.

18/25



Nix Shell for Building - genericBuild

You can use the function to run the build for the

L :~]1$ mkdir /tmp/build
[ :~]$ cd /tmp/build/
C

:/tmp/build]$ genericBuild
sources

package by hand:

/nix/store/3x7dwzq014bblazs7kq20p9hyzz0gh8g-hello-2.10.tar.gz

root is hello-2.10

sources

:/tmp/build/hello-2.10]$ 1s -1 hello
1 sochan sochan 131032 May 27 20:59 hello

:/tmp/build/hello-2.10]$ ./hello
, world!

19/25



Making a Custom Nix Shell - Definition

Nix shells are quite powerful, so why not make a Nix shell without a package to build?

That's exactly what is for and it is simply a special type of derivation.
{ ? import <mixpkgs> { } }:
{
= with pkgs; strace |;
}

20/25


https://github.com/NixOS/nixpkgs/blob/master/pkgs/build-support/mkshell/default.nix

Making a Custom Nix Shell - Usage

By calling in a directory with the given we would get:
>
World!

§ :/tmp/x]$ echo
World!

§ :/tmp/x]$ which strace

And the derivation cannot be built:
> shell.nix

derivations will be built:

derivation is not meant to be built, aborting

21/25



What are Nix Packages

The special path you see in various places is simply the repo:

Which is by default found and loaded based on value of variable.

All of the packages are loaded into one file at:

Which essentially looks like a bunch of calls:

= callPackage ../build-support/fetchzip { };
= callPackage ../build-support/rust/fetchcrate.nix { };

callPackage ../build-support/fetchgithub {};

= callPackage ../build-support/fetchbitbucket {};

= callPackage ../build-support/fetchsavannah {};

callPackage ../build-support/fetchgitlab {};

22/25


https://github.com/NixOS/nixpkgs
https://github.com/NixOS/nixpkgs/blob/master/pkgs/top-level/all-packages.nix

The Good

Readable definitions of packages
Hierarchical structure of dependencies
Easy debugging of package builds
Ad-hoc customizable shells

Can be used on any Linux or Darwin
Operating system built using Nix

T
The Bad
Unfamiliar syntax for most

Massive hard to search docs
Multitude of similar commands

Hard to discover libraries

23/25


https://nixos.org/nixos/

Resources

General

Community

= |IRC - on

24/25


https://nixos.org/learn.html
https://nixos.wiki/wiki/Nix_Expression_Language
https://nixos.org/nixos/nix-pills/index.html
https://nixos.org/nix/manual/
https://nixos.org/nixpkgs/manual/
https://github.com/NixOS/nixpkgs
https://www.youtube.com/watch?v=D5Gq2wkRXpU
https://www.youtube.com/watch?v=lxtHH838yko
https://discourse.nixos.org/

IIIiiil!!I%H%%iiI%iHHI%lIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Pretending to understand concepts and acronyms

Essential

oY

Nodi‘
Along

@ThePracticalDev

25/25



